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Abstract

In this paper, we extend and solve the Björling-type problem for spacelike, zero mean curvature sur-
faces in the Lorentz–Minkowski four-dimensional spaceL4. As an application we establish symmetry
principles for this class of surfaces inL4 and construct new examples.
© 2005 Elsevier B.V. All rights reserved.

PACS: 02.40.−k; 03.30.+p

MSC: 53A10; 53C42; 53C50

JGP SC: Differential geometry

Keywords: Lorentz–Minkowski space; Minimal surfaces; Symmetries; Holomorphic extensions; Riemann surfaces

1. Introduction

It is well known that spacelike, zero mean curvature surfaces inL3 represent lo-
cally a maximum for the area integral[15,7] and also that they admit a Weierstrass-
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type representation[21,22]. But the spacelike, zero mean curvature surfaces inL4, rep-
resent locally the maximum (resp. minimum) for the area integral, if the normal vari-
ation is made in the timelike (resp. spacelike) direction[19]. For these surfaces we
also have Weierstrass-type representation[3,12]. An important difference between the
global theory of spacelike, zero mean curvature surfaces inL

3 and of the global the-
ory of spacelike, zero mean curvature surfaces inL4 is established by the so-called
Calabi–Bernstein theorem. It states that a complete spacelike, zero mean curvature sur-
face in L3 is a plane[7,8]. However, this result cannot be extended toLn, n ≥ 4
[11].

In the three-dimensional Euclidian spaceR3, given a real analytic strip (seeSection 3),
the classical Bj̈orling problem[9,16] was proposed by Björling [6] in 1844 and consists
of the construction of a minimal surface inR3 containing the strip in the interior. The
solution for this problem was given by Schwarz in[25] by means of a explicit formula in
terms of the prescribed strip. This formula gives a beautiful method, besides the Weierstrass
representation[24], to construct minimal surfaces with interesting properties. For example,
properties of symmetry.

The equivalent problem in the Lorentz–Minkowski three-dimensional space was pro-
posed and solved, using a complex representation formula developed in[1]. The authors
introduced the local theory of spacelike, zero mean curvature surfaces inL

3 in a different
way of that given in[21,22] through the Weierstrass representation. They constructed new
examples of space like, zero mean curvature surfaces, gave alternative proofs of the charac-
terization of the spacelike, zero mean curvature surfaces of revolution and the ruled surfaces
in L3 and proved symmetry principles for those surfaces. We can also find in the work of
Gálvez and Mira[13], the version of Bj̈orling problem in the hyperbolic three-dimensional
spaceH3. In that paper the authors constructed the unique mean curvature one surface in
H

3 that passes through a given curve with a given unit normal along it, and provide diverse
applications.

In Euclidian four-dimensional space, the Björling problem for minimal surfaces was
proposed and solved in[4], see also[2], from a complex representation formula. In that
work the authors also recovered the symmetry principles of minimal surfaces inR

4 obtained
by Eisenhart[10].

In this paper, motivated by results and techniques of[1,4,12], we introduce the local
theory of spacelike, zero mean curvature surfaces inL4, using a complex representation
formula – seeTheorem 3.1– that describes the local geometry of these surfaces. This
formula is used to solve the Björling problem inL4, which is illustrated with two examples.
As another consequence ofTheorem 3.1we recover the representation formulae of the
Björling problem for minimal surfaces inR3 and spacelike, zero mean curvature surfaces
in L3. We also recover the symmetry principles for these surfaces. Finally, we study the
symmetry principles for the spacelike, zero mean curvature surfaces inL

4 and present new
examples.

It is not difficult to see that the results in this paper can be extended to spacelike, zero
mean curvature surfaces inLn, n ≥ 4. Here we restricted the problem to the casen = 4
because the formulae and statements are more concise in this case. Also, the casen = 4 it
is the simplest example of a relativistic spacetime.
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2. Preliminaries

LetL4 denote the four-dimensional Lorentz–Minkowski space, that is, the vector space
R

4 := {(x1, x2, x3, x4) : xi ∈ R} endowed with the Lorentzian metric

〈 , 〉 := (dx1)2 + (dx2)2 + (dx3)2 − (dx4)2. (1)

Givenu, v, w in L4, we define the vector product�(u, v,w) ∈ L4 by

〈�(u, v,w), x〉 := −det(u, v,w, x), (2)

which in coordinates takes the form

�(u, v,w) =


∣∣∣∣∣∣∣
u2 v2 w2

u3 v3 w3

u4 v4 w4

∣∣∣∣∣∣∣ ,−
∣∣∣∣∣∣∣
u1 v1 w1

u3 v3 w3

u4 v4 w4

∣∣∣∣∣∣∣ ,
∣∣∣∣∣∣∣
u1 v1 w1

u2 v2 w2

u4 v4 w4

∣∣∣∣∣∣∣ ,
∣∣∣∣∣∣∣
u1 v1 w1

u2 v2 w2

u3 v3 w3

∣∣∣∣∣∣∣
 .

Let {e1, e2, e3, e4} be the canonical basis ofR4. The proof of the following proposition is
straightforward.

Proposition 2.1. The vector product � has the following properties:

(1) 〈�(u, v,w), u〉 = 〈�(u, v,w), v〉 = 〈�(u, v,w), w〉 = 0;
(2) �(u, v, e4) = û× v̂, where û = (u1, u2, u3,0), v̂ = (v1, v2, v3,0) ∈ R3 ⊂ L4;
(3) �(u, v, e2) = ǔ× v̌, where ǔ = (u1,0, u3, u4), v̌ = (v1,0, v3, v4) ∈ L3 ⊂ L4;
(4) �(u, v, e1) = −ǔ× v̌ and �(u, v, e3) = −ǔ× v̌;
(5) 〈�(u1, u2, u3),�(v1, v2, v3)〉 = −det(〈ui, vj〉),1 ≤ i; j ≤ 3, ui, vj ∈ L4; where × is

the cross-product of R3 or of L3.

LetCn1 be then-dimensional complex vector space endowed with thehermitian structure

� z,w 	:=
n−1∑
j=1

zjw̄j − znw̄n.

We will deal with the following subsets of thecomplex projective space P(Cn1) associated
to P(Cn1) (see[14,5,23]):

(1) CPn−1
1 := {z ∈ Cn \ {0} :� z, z 	> 0}/C∗;

(2) CHn−1 := {z ∈ Cn \ {0} :� z, z 	< 0}/C∗;
(3) ∂CHn−1 := {z ∈ Cn \ {0} :� z, z 	= 0}/C∗.

Denote byG+
2,4 the Grassmannian of spacelike 2-planes ofL

4 with the induced orienta-
tion. Givenu, v ∈ L4, with 〈u, u〉 = 〈v, v〉 = λ2 > 0 and〈u, v〉 = 0, letΠ2 = span[u, v] ∈
G+

2,4. We can identifyG+
2,4 withQ2

1 := {[z] ∈ CPn−1
1 :� z, z̄ 	= 0} through the mapping
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that sends eachΠ2 ∈ G+
2,4 into [z] ∈ Q2

1 wherez = u+ iv. GivenΠ2 = span[u, v] ∈ G+
2,4,

let ν0 := �(u, v, e4) andτ0 := �
(
u
λ
, v
λ
, ν0
)
; then{ν0, τ0} is a basis for (Π2)⊥.

Proposition 2.2. Let ν0 and τ0 defined as above. We have:

(1) ν0 = û× v̂, where × is the cross-product in R3 ⊂ L4;
(2) τ0 = λ2e4 + u4u+ v4v, where λ2 = 〈u, u〉;
(3) 〈ν0, ν0〉 = λ2(λ2 + (u4)2 + (v4)2) and 〈τ0, τ0〉 = −λ2(λ2 + (u4)2 + (v4)2);
(4) if µ0 :=

√
λ2(λ2 + (u4)2 + (v4)2), τ := τ0

µ0
and ν := ν0

µ0
, then

{
u
λ
, v
λ
, ν, τ

}
is a posi-

tively oriented orthonormal basis of L4.

Denote byG−
2,4 the Grassmannian of timelike 2-planes ofL4 with the induced ori-

entation. Givenν1, ν2 ∈ L4, with 〈ν1, ν1〉 = −〈ν2, ν2〉 = λ2 > 0 and 〈ν1, ν2〉 = 0, let
Π2 = span[ν1, ν2] ∈ G−

2,4. We can identify, as above,G−
2,4 with the real quadricQR, which

is defined as the set of classes [z] ∈ ∂CHn−1 such that〈Re(z), Im(z)〉 = 0 andRe(z), Im(z)
are linearly independent.

Definition 2.3. A smooth immersionX : M2 → L
4 of a two-dimensional oriented con-

nected manifold is called aspacelike surface S in L4 if the induced metric ds2 := X∗〈, 〉 on
M2 is a Riemannian metric.

Let (U, z = u+ iv) be isothermal coordinates in a neighborhood of a pointp inM2, that
is 〈Xu,Xu〉 = 〈Xv,Xv〉 = λ2 and〈Xu,Xv〉 = 0. This induces a holomorphic structure on
M2. We define an orthonormal basis{ν, τ} of (TpS)⊥ by

ν = ν0

µ0
and τ = τ0

µ0
, (3)

where

ν0 = �(Xu,Xv, e4), τ0 = �(Xu,Xv, ν0), µ0 =
√
λ2(λ2 + (x4

u)2 + (x4
v)2).

Observe thatν andτ are, respectively, spacelike and timelike vector fields normal to the
surfaceS = X(M) and it is not hard to see that they are globally defined onS. Also, let
β = {∂1, ∂2, ∂3, ∂4} be the local orthonormal frame adapted toS, where

∂1 = Xu

λ
, ∂2 = Xv

λ
, ∂3 = ν, ∂4 = τ. (4)

As far as we know, the normal frame{ν, τ} was introduced in[12], where spacelike sur-
faces inL4 are extensively studied. Let̄∇ and ∇ be the Levi–Civita connection ofL4

and (M2,ds2), respectively. Thesecond fundamental form of S is defined byα(V,W) :=
(∇̄VW)⊥ and themean curvature vector byHp := 1

2tr(αp) for all p ∈ M2.

Proposition 2.4. If S = X(M) is a spacelike surface in Ln, then �MX = 2H .

Proof. See[12]. �
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Remark 2.5. A spacelike surfaceS in L4 has zero mean curvature ifH = 0 for all points
of S.

LetS = X(M) a spacelike surface inL4 defined in terms of local isothermal coordinates
(U, z = u+ iv) of M2, and define the complex functions

ϕk := ∂xk

∂u
− i
∂xk

∂v
, k = 1,2,3,4. (5)

It is not hard see that

(ϕ1)2 + (ϕ2)2 + (ϕ3)2 − (ϕ4)2 = 0, |ϕ1|2 + |ϕ2|2 + |ϕ3|2 − |ϕ4|2 = 2λ2 > 0.

The induced metric onM is ds2 = λ2|dz|2 and the complex 1-formsωk := ϕk dz are glob-
ally defined onM. Now if S is a spacelike, zero mean curvature surface, it follows from
Proposition 2.4thatωk is holomorphic. Thus,S can be represented as

X(z) = Re
∫ z

z0

ω + k0, whereω = (ω1, ω2, ω3, ω4) andz0, z ∈ M. (6)

The converse also holds.

Theorem 2.6. LetM2 be a connected Riemann surface and ω = (ω1, ω2, ω3, ω4) a holo-
morphic 1-form with values in C4 globally defined on M2 satisfying

(1) � ω,ω 	≡ 0,
(2) � ω,ω 	> 0, ∀p ∈ M2,
(3) Re

∫
γ
ω = 0, for all closed path γ on M2.

Then the map X : M2 → L
4 given by the Eq.(6) defines a spacelike, zero mean curvature

surface in L4.

For the proof see[12]. TheGauss mapG : M2 → Q2
1 of a spacelike surfaceS = X(M)

in L4 is defined locally byG(z) = [Φ(z)], with Xz = ψΦ for some functionψ : M2 → C

andΦ = (φ1, φ2, φ3, φ4), for more details see[18,12]. Leta(z), b(z) be the complex valued
functions defined onM2 by

a(z) := −φ3 + φ4

φ1 − iφ2 , b(z) := φ3 + φ4

φ1 − iφ2 · (7)

We have that

Φ(z) = µ(1 + ab, i(1 − ab), a− b, a+ b). (8)
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It follows from (3) and (8) that

τ(z) = 1

|1 − ab̄|
√

(1 + |a|2)(1 + |b|2)


(1 + |b|2)Re(a) + (1 + |a|2)Re(b)

(1 + |b|2)Im(a) + (1 + |a|2)Im(b)

|a|2 − |b|2
(1 + |a|2)(1 + |b|2)

 ,

ν(z) = 1

|1 − ab̄|
√

(1 + |a|2)(1 + |b|2)


(1 + |b|2)Re(a) − (1 + |a|2)Re(b)

(1 + |b|2)Im(a) − (1 + |a|2)Im(b)

|a|2|b|2 − 1

0

 .

For more details see[12]. LetA : M2 → C
4 be the complex map defined by

A(z) := ν(z) + iτ(z), (9)

and observe that [A(z)] ∈ QR.

3. Main results

Now we are able to propose and solve the Björling problem for spacelike, zero mean
curvature surfaces inL4. Let c : I ⊆ R→ L

4 be a regular real analytic spacelike curve in
L

4 and letn : I → C
4 be a real analytic vector field alongc (that is,Re(n), Im(n) : I → L

4

are vector fields alongc) such that〈c′(s),Re(n)〉 = 0 = 〈c′(s), Im(n)〉, 〈Re(n),Re(n)〉 =
−〈Im(n), Im(n)〉 = 1 andIm(n) is future directed for alls ∈ I. In analogy with[1,9], we
call such a pair (c, n) a analytical strip in L4. The problem is then to find a spacelike, zero
mean curvature surfaceS defined byX : Ω ⊆ C→ L

4 with I ⊂ Ω, such that

(1) X(u,0) = c(u),
(2) A(u,0) = n(u),∀ u ∈ I.

It is easy to see that ifX : Ω ⊆ C→ L
4 is a spacelike, zero mean curvature surface inL4,

thenc(u) := X(u,0) andn(u) := A(u,0) satisfy the above data and, in particular, they are
real analytic. Then there exist holomorphic extensionsc(z) andn(z) and these extensions
are unique by theidentity theorem for analytic functions (see[22, p. 87]). In this situation,
we can explicitly recoverX(z) from c andn by means of a unique complex representation
formula.

Theorem 3.1. Let S be a spacelike, zero mean curvature surface in L4 given by X : U ⊆
C→ L

4. Define the curve c(u) := X(u,0) and the vector field n(u) := A(u,0) along c, on
a real interval I ⊂ U. Choose any simply connected open set Ω ⊆ U containing I, over
which we can define holomorphic extensions c(z) and n(z) of c and n. Then, for all z ∈ Ω
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it holds

X(z) = Re
(
c(z) + i

∫ z

s0

�(Re(n(w)), Im(n(w)), c′(w)) dw

)
, (10)

where s0 is a arbitrary fixed point of I and the integral is taken along an arbitrary path in
Ω joining s0 and z.

Proof. SinceS has zero mean curvature, the complex functionΨ : U → C
4 defined by (5)

Ψ = 2
∂X

∂z
with Ψ = (ϕ1, ϕ2, ϕ3, ϕ4),

is holomorphic inU and by (6) we can write

X(z) = Re
∫ z

z0

Ψ dz+ k0, (11)

where k0 ∈ L4 is a suitable constant such thatX(u,0) = c(u) for all u ∈ I. Let
{∂1, ∂2, ∂3, ∂4} be the local orthonormal frame adapted toS given in (4). Now write�
in this basis,

�(∂3, ∂4, ∂1) = 〈�(∂3, ∂4, ∂1), ∂2〉∂2 = −det(∂1, ∂2, ∂3, ∂4)∂2 = −∂2,

and sinceXv = λ∂2, we have

Ψ (z) = Xu(z) − iXv(z) = Xu + i � (ν(z), τ(z), Xu(z)) (12)

in isothermal coordinates (U, z = u+ iv). RestrictingΨ (z) to I and using the definition of
c, n we obtain

Ψ (u,0) = Xu(u,0) + i � (ν(u,0), τ(u,0), Xu(u,0))

= c′(u) + i � (Re(n(u)), Im(n(u)), c′(u)).

Since these functions are real analytic, we can extend them to two holomorphic functions
Ψ (z), c′(z) + i� (Re(n(z)), Im(n(z)), c′(z)) on a simply connected open setΩ ⊆ U and
they coincide onI ⊂ Ω. Hence by theidentity theorem for analytic functions it follows that

Ψ (z) = c′(z) + i � (Re(n(z)), Im(n(z)), c′(z)), ∀ z ∈ Ω.

Therefore

Γ (z) := c(z) + i
∫ z

s0

�(Re(n(w)), Im(n(w)), c′(w)) dw, ∀ z ∈ Ω
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is well defined onΩ and obviously is the primitive of the holomorphic mappingΨ (z). Thus,
(11) yields

X(z) = Re
(
c(z) + i

∫ z

s0

�(Re(n(w)), Im(n(w)), c′(w)) dw

)
.

This completes the proof of the theorem.�

Remark 3.2. We can choose anys0 ∈ I in (10) and the values ofX(z) will remain the same,
sincec′(z),Re(n(z)), Im(n(z)) all take real values inI ∈ Ω.

Using the complex representation formula given in (10), we now show that the Björling
problem has a unique solution.

Theorem 3.3. There exists a unique solution X : Ω → L
4 to the Björling problem for

spacelike, zero mean curvature surfaces in L4, which is given by

X(z) = Re
(
c(z) + i

∫ z

s0

�(Re(n(w)), Im(n(w)), c′(w)) dw

)
, (13)

with w = u+ iv ∈ Ω, s0 ∈ I, where Ω is a simply connected open subset of C containing
the real interval I and for which c, n admit holomorphic extensions c(z), n(z).

Proof. Define the holomorphic curveΨ : Ω ⊆ C→ C
4 by

Ψ (z) = c′(z) + i � (Re(n(z)), Im(n(z)), c′(z)), ∀ z ∈ Ω. (14)

whereΩ is a simply connected open subset ofC containingI on which the holomorphic
extensionsc(z), n(z) exist. Since byProposition 2.1, c′(u) and�(Re(n(u)), Im(n(u)), c′(u))
are orthogonal and have the same length, it follows that

(ϕ1(u,0))2 + (ϕ2(u,0))2 + (ϕ3(u,0))2 − (ϕ4(u,0))2 = 0,∀u ∈ I.

We also have that

|ϕ1(u,0)|2 + |ϕ2(u,0)|2 + |ϕ3(u,0)|2 − |ϕ4(u,0)|2 = 2〈c′(u), c′(u)〉 > 0.

Thus

(ϕ1(z))2 + (ϕ2(z))2 + (ϕ3(z))2 − (ϕ4(z))2 = 0,

|ϕ1(z)|2 + |ϕ2(z)|2 + |ϕ3(z)|2 − |ϕ4(z)|2 > 0,

for all z ∈ Ω. Moreover, the holomorphic curveΨ has no real periods forΩ is simply
connected. Therefore byTheorem 2.6, X(z) = Re ∫ z

s0
Ψ (w) dw defines a spacelike, zero

mean curvature surfaceS = X(Ω) in L4, whereΨ is given by (14) ands0 ∈ I. Now we
shall check that this surface satisfies the Björling conditionsX(u,0) = c(u) andA(u,0) =
n(u). The verification of the first condition is easy, since�(Re(n), Im(n), c′) is real when



204 A.C. Asperti, J.A.M. Vilhena / Journal of Geometry and Physics 56 (2006) 196–213

restricted toI. To check the second condition, first recall thatΨ = 2(∂X/∂z). So it follows
from (14) that, restricted toI, we have

Xu(u,0) = c′(u) and Xv(u,0) = − � (Re(n(u)), Im(n(u)), c′(u)).

On the other hand, from (12) we have

Xv(u,0) = − � (ν(u,0), τ(u,0), c′(u)).

SinceIm(n(u)) is future directed it follows thatRe(n(u)) = ν(u,0) andIm(n(u)) = τ(u,0).
At last we will prove the uniqueness, which is to be understood in the following sense:
if X̃(u, v), z = u+ iv ∈ Ω̃ is another solution, thenX(u, v) = X̃(u, v) for z = u+ iv ∈
Ω ∩ Ω̃. In fact, any pair of solutionsX, X̃ to the Bj̈orling problem coincide on a real interval
I ⊂ Ω ∩ Ω̃, and since both are analytic they must coincide onΩ ∩ Ω̃. This completes the
proof of the theorem. �

Remark 3.4. Observe that the unicity in the above theorem is only referred to spacelike, zero
mean curvature surfacesX : Ω ⊆ C→ L

4 satisfyingX(u,0) = c(u) andA(u,0) = n(u).
Actually a little more can be proven: given an analytic strip (c, n) inL4, there exists a unique
spacelike, zero mean curvature immersionX : M2 → L

4 whose image containsc(I) andA
restricted toc is n. The existence part of this statement follows fromTheorem 3.3. For the
unicity part, we refer to Corollary 3.4 of[1]. There unicity is proven for analytic strips in
L

3 and spacelike, zero mean curvature surfaces inL
3, but their arguments work in our case

as well.

Example 3.5. Consider

c(s) = (s− s3,0, s2,0) ∈ L4,

n(s) = 1

(1 − 2s2 + 9s4)1/2
(2s,−2

√
2si,−(1 − 3s2), (1 + 3s2)i) ∈ C4,

for all s ∈ R. By a straightforward calculation, we obtain that

�(Re(n(s)), Im(n(s)), c′(s)) = (0,1 + 3s2,0,−2
√

2s),

whose holomorphic extension is

�(Re(n(w)), Im(n(w)), c′(w)) = (0,1 + 3w2,0,−2
√

2w).

Thus

X(z) := Re((z− z3,0, z2,0)) − Im((0, z+ z3 − (s0 + s30),0,−
√

2z2 +
√

2s20))
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and therefore, the solution of the Björling problem for the given strip is

X(z) = (u+ 3uv2 − u3,−v− 3u2v+ v3, u2 − v2,2
√

2uv),

with z = u+ iv ∈ C.

Example 3.6. Consider

c(s) = (1 + cos(s),0, sin(s),2 sin(s/2)) ∈ L4,

n(s) = (cos(s),0, sin(s),0) + i(−1 − cos(s),0, cos(s) cot(s/2), csc(s/2)) ∈ C4,

for all s ∈ (0,2π). By similar calculations,

�(Re(n(w)), Im(n(w)), c′(w)) = (0, sin(z/2),0,0).

Then

X(z) := Re((1 + cos(z),0, sin(z),2 sin(z/2))) − Im(−2 cos(z/2) + 2 cos(s0/2))

and therefore, the solution of the Björling problem for the given strip is

X(z) = (1 + cos(u) cosh(v),

−2 sin(u/2) sinh(v/2), cosh(v) sin(u),2 cosh(v/2) sin(u/2)),

with z = u+ iv, whereu ∈ (0,2π) andv ∈ R.

As consequences ofTheorem 3.3we recover the classical Björling problem forR3 and
also the Bj̈orling problem forL3, see[1].

Corollary 3.7. Let c : I → R
3,R3 ≡ {x4 = 0} ⊂ L4, be a regular real analytic curve and

let n : I → C
4 be a real analytic vector field along c such that n(s) = ξ(s) + ie4, where

ξ(s) ∈ R3 is a unitary vector field satisfying 〈c′(s), ξ(s)〉 = 0 for all s ∈ I. Then there exists
a unique solution to the Björling problem for minimal surfaces in R3, which is given by

X(z) = Re
{
c(z) − i

∫ z

s0

(ξ(w) × c′(w)) dw

}
, (15)

where w = u+ iv ∈ Ω, s0 ∈ I,Ω is a simply connected open set of C containing I and ×
is the cross-product of R3.

Proof. FromTheorem 3.3it follows that the solution to the Björling problem is given by

X(z) = Re
(
c(z) + i

∫ z

s0

�(ξ(w), e4, c
′(w)) dw

)
= Re

(
c(z) − i

∫ z

s0

�(ξ(w), c′(w), e4) dw

)
.
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Hence, fromProposition 2.1item 2 we have

X(z) = Re
(
c(z) − i

∫ z

s0

ξ̂(w) × ĉ′(w) dw

)
= Re

(
c(z) − i

∫ z

s0

ξ(w) × c′(w) dw

)
.

Corollary 3.8. Let c : I → L
3,L3 ≡ {x2 = 0} ⊂ L4, be a regular real analytic spacelike

curve and letn : I → C
4 be a real analytic vector field along c of the formn(s) = e2 + iV (s),

where V (s) ∈ L3 is a future directed, timelike unitary vector field such that 〈c′(s), V (s)〉 = 0
for all s ∈ I. Then there exists a unique solution to the Björling problem for spacelike, zero
mean curvature surfaces in L3, which is given by

X(z) = Re
{
c(z) + i

∫ z

s0

(V (w) × c′(w)) dw

}
, (16)

where w = u+ iv ∈ Ω, s0 ∈ I,Ω is a simply connected open set of C containing I and ×
is the cross-product in L3.

Proof. FromTheorem 3.3if follows that the solution to the Björling problem is given by

X(z) = Re
(
c(z) + i

∫ z

s0

�(e2, V (w), c′(w)) dw

)
= Re

(
c(z) + i

∫ z

s0

�(V (w), c′(w), e2) dw

)
.

Hence, fromProposition 2.1item 3 we have

X(z) = Re
(
c(z) + i

∫ z

s0

V̌ (w) × č′(w) dw

)
= Re

(
c(z) + i

∫ z

s0

V (w) × c′(w) dw

)
.

�

4. Symmetries

Now, we will study the symmetries of the spacelike, zero mean curvature surfaces inL
4

via the complex representation formula of the Björling problem for spacelike, zero mean
curvature surfaces. In order to do so we fix the following notation. Letf (z) = x(z) + iy(z),
wherex(z), y(z) are real-valued functions defined on the open setΩ ofC. If x(z) is harmonic
andf (z) is holomorphic inΩ, thenx(z̄) is harmonic andf (z̄) is holomorphic as a function
of z in the open setΩ∗ := {z̄ : z ∈ Ω}. Note that,Ω is symmetric if only ifΩ = Ω∗. We
also have that, ifI ⊂ Ω, f is holomorphic inΩ andf restrict toI take only real values, then
f (z) = f (z̄) onI ⊂ Ω ∩Ω∗. Therefore,f (z) can be holomorphically extended toΩ ∪Ω∗.

Proposition 4.1. Let X : Ω ⊆ C→ L
4 be the solution of the Björling problem, for a

given strip (c, n) in L4, where Ω is a symmetric simply connected open set containing the
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real interval I and for which c and n admit holomorphic extensions c(z) andn(z), where
z = u+ iv ∈ Ω. Then for allz ∈ Ω we have

X(z̄) = Re
{
c(z) − i

∫ z

s0

�(Re(n(w)), Im(n(w)), c′(w)) dw

}
. (17)

Proof. The surfacẽS = X̃(Ω) given byX̃(u, v) := X(u,−v), clearly satisfies̃Xuu(u, v) =
Xuu(u,−v), X̃vv(u, v) = Xvv(u,−v) and still is a spacelike, zero mean curvature surface
in L4. Associated toX̃, let Ã(u, v) := ν̃(u, v) + iτ̃(u, v). From Proposition 2.2and the
definition of�, we have that

τ̃0(u, v) = (λ2e4 + x4
uXu + x4

vXv)(u,−v),
ν̃0(u, v) = − � (e4, Xu(u,−v), Xv(u,−v)),

and hencẽτ(u, v) = τ(u,−v) andν̃(u, v) = −ν(u,−v). Therefore,

Ã(u, v) = −A(u,−v). (18)

This implies that̃A(u,0) = −A(u,0) = −n(u) andX̃(u,0) = X(u,0) = c(u). HenceX̃ is
a solution of the Bj̈orling problem for ˜c = c, ñ = −n̄ and thenX̃(z) = Re ∫ z

s0
Ψ̃ (w) dw,

whereΨ̃ (z) = X̃u + i � (ν̃(z), τ̃(z), X̃u(z)), see (13). Restricting̃Ψ (z) to I and using (18)
we obtain

Ψ̃ (u,0) = Xu(u,0) + i � (−ν(u,0), τ(u,0), Xu(u,0))

= c′(u) − i � (Re(n(u)), Im(n(u)), c′(u)).

When we extend these functions toΩ∗, the result follows. �

The proofs of the following corollaries are analogous to those ofCorollaries 3.7 and 3.8.

Corollary 4.2. Under the hypothesis of Proposition 4.1, if S = X(Ω) ⊂ R3 ≡ {x4 = 0}
and n is of the form n(s) = ξ(s) + ie4, with ξ(s) ∈ R3 unitary such that 〈c′(s), ξ(s)〉 = 0 for
all s ∈ I, then

X(z̄) = Re
{
c(z) + i

∫ z

s0

(ξ(w) × c′(w)) dw

}
, for all z ∈ Ω. (19)

Corollary 4.3. Under the hypothesis of Proposition 4.1, if S = X(Ω) ⊂ L3 ≡ {x2 = 0}
and n is of the form n(s) = e2 + iV (s), with V (s) ∈ L3 unitary, future directed, timelike and
such that 〈c′(s), V (s)〉 = 0 for all s ∈ I, then

X(z̄) = Re
{
c(z) − i

∫ z

s0

(V (w) × c′(w)) dw

}
, for all z ∈ Ω. (20)

Remark 4.4. Using the formulae (15) and (19), it is not difficult to recover the two symmetry
principles discovered by Schwarz for minimal surfaces inR3(see[11, p. 123]). Also, by
using (16) and (20), we can recover the two symmetry principles for spacelike, zero mean
curvature surfaces inL3 given in[2, Theorem 3.10].
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Now using (13) and (17) we will derive three symmetry principles for spacelike, zero
mean curvature surfaces inL4. They were motivated by the works of Schwarz and[1] above
mentioned. Before going to it, we have the following definitions.
Definition 4.5. LetΠk be ak-plane inL4. Assume thatΠk is spacelike ifk = 1;Πk is
spacelike, timelike or degenerate ifk = 2;Πk is timelike if k = 3. Under those conditions,
we say thatΠk is a k-plane of symmetry of a spacelike surfaceX : M2 → L

4 if for all
p ∈ M2 there exists a certainq ∈ M2 such thatX(p), X(q) are symmetric with respect to
Πk, that is, such that (X(q) +X(p))/2 ∈ Πk andX(q) −X(p) is perpendicular toΠk.

Theorem 4.6. Let S be a spacelike, zero mean curvature surface in L4, given by X : U ⊆
C→ L

4. Then we have:

(1) every spacelike straight line contained in S is an axis of symmetry of S;
(2) if S intersects any timelike or spacelike 2-planeΠ2, orthogonally along a curve regular

of S, then Π2 is a plane of symmetry of S;
(3) if S intersects any timelike 3-space Π3, orthogonally along a curve regular of S, then

Π3 is a 3-plane of symmetry of S.

Before going through the proof, it is convenient to make the following observation.
Suppose for instance that the spacelike, zero mean curvature surfaceS contains a segment
of line L, which, we may assume is a portion of thex1-axis. Then it is possible to define
isothermal coordinatesz = u+ iv in a neighborhood ofL so thatX(u,0) parametrizesL,
see[17]. Analogous observations are in place in caseS intersects orthogonally thex1, x4-
plane, or thex1, x2-plane or the 3-space{x3 = 0}. With this in mind, it is not difficult to see
thatTheorem 4.6is now a consequence of the following lemma.

Lemma 4.7. Let S be a spacelike, zero mean curvature surface in L4, given by X : Ω ⊆
C→ L

4, with Ω is symmetric and simply connected.

(1) If, for all u ∈ I, the curve c(u) = X(u,0), is contained in the x1-axis, then

X(u,−v) = (x1(u, v),−x2(u, v),−x3(u, v),−x4(u, v)). (21)

(2) If, for all u ∈ I, the curve c(u) = X(u,0), is contained in the timelike x1, x4-planeΠ2,
and if the surface S intersects Π2 orthogonally along c, then

X(u,−v) = (x1(u, v),−x2(u, v),−x3(u, v), x4(u, v)). (22)

(3) If, for all u ∈ I, the curve c(u) = X(u,0), is contained in the spacelike x1, x2-plane
Π2, and if the surface S intersects Π2 orthogonally along c, then

X(u,−v) = (x1(u, v), x2(u, v),−x3(u, v),−x4(u, v)). (23)

(4) If, for all u ∈ I, the curve c(u) = X(u,0), is contained in the timelike 3-space Π3 =
{x2 = 0}, and if the surface S intersects Π3 orthogonally along c, then

X(u,−v) = (x1(u, v),−x2(u, v), x3(u, v), x4(u, v)). (24)

Proof.

(1) Set c(u) := X(u,0) and n(u) := A(u,0). By hypothesis, it follows that
c(u) = (c1(u),0,0,0), Re(n(u)) = (0, ν2(u,0), ν3(u,0), ν4(u,0)) and Im(n(u)) =
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(0, τ2(u,0), τ3(u,0), τ4(u,0)). Hence, by a straightforward calculation we have that
�(Re(n(u)), Im(n(u)), c′(u)) is of the form (0,�2(u),�3(u),�4(u)). On account of
(13), (17) it follows, respectively, that

X(z) =
(
Re(c1(z)),−Im

∫ z

s0

�2(w) dw,

− Im
∫ z

s0

�3(w) dw,−Im
∫ z

s0

�4(w) dw

)
,

X(z̄) =
(
Re(c1(z)), Im

∫ z

s0

�2(w) dw, Im
∫ z

s0

�3(w) dw, Im
∫ z

s0

�4(w) dw

)
,

which proves (21).
(2) Since by hypothesis,S intersectsΠ2 = {x2 = 0, x3 = 0} orthogonally atc(u) :=

X(u,0), it follows that c(u) = (c1(u),0,0, c4(u)). Now recall that the 2-planeP2

generated byRe(n(u)) andIm(n(u)) is orthogonal toTc(u)S alongc. It follows that
�(Re(n(u)), Im(n(u)), c′(u)) is of the form (0,�2(u),�3(u),0). On account of (13)
and (17) we then arrive at the formula (22).

(3) The proof is analogous to item (2).
(4) The hypothesis implies thatc(u) = (c1(u),0, c3(u), c4(u)). SinceS intersectsΠ3 or-

thogonally, we have thatXv(u,0) ∈ (Π3)⊥ and thereforeXv(u,0) is parallel to the
unitary vectore2 which is normal toΠ3. ThenRe(n(u)) and Im(n(u)) lie in Π3,
which implies that the second component of both vectors are equal to zero. Hence
�(Re(n(u)), Im(n(u)), c′(u)) is of the form (0,�2,0,0). Therefore, in conjunction
with (13) and (17) we obtain (24).�

If in Theorem 4.1Π2 is a degenerate two plane, we have the following proposition.

Proposition 4.8. LetX : Ω ⊆ C→ L
4 be a spacelike, zero mean curvature surface,withΩ

symmetric, simply connected and assume that S = X(Ω) intersects the degenerate 2-plane
Π2 = [e1 + e4, e2] orthogonally along the curve c(u) = X(u,0). Then S is contained in
the degenerate 3-space Π3 = [e1 + e4, e2, e3]. Moreover Π2 is a plane of symmetry for S
if and only if Xv(u,0) is a multiple of e3.

Proof. Consider the basisF = {ε1, ε2, ε3, ε4} of L4, where ε1 =
√

2
2 (e1 + e4), ε2 =√

2
2 (e1 − e4), ε3 = e2, ε4 = e3 and observe thatΠ2 = [ε1, ε3]. It is clear thatc(u) = X(u,0)

is of the formc(s) = (c1(s), c2(s),0, c1(s)). Since the 2-planeP2 = [Re(n(u)), Im(n(u))]
is orthogonal toTc(u)S alongc, is follows that−Xv(u,0) = �(Re(n(u)), Im(n(u)), c′(u))
is of the form (�1(u),0,�3(u),�1(u)). By the same arguments as before, we obtain that

X(z) =
(
Re(c1(z)) − Im

∫ z

s0

�1(w) dw,Re(c2(z)),

−Im
∫ z

s0

�3(w) dw,Re(c1(z)) − Im
∫ z

s0

�1(w) dw

)
,
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X(z̄) =
(
Re(c1(z)) + Im

∫ z

s0

�1(w) dw,Re(c2(z)), Im
∫ z

s0

�3(w) dw,Re(c1(z))

+Im
∫ z

s0

�1(w) dw

)
,

which written in the basisF gives, respectively

X(z) =
(
Re(c1(z)) − Im

∫ z

s0

�1(w) dw,0,Re(c3(z)),−Im
∫ z

s0

�4(w) dw,

)
F

,

X(z̄) =
(
Re(c1(z)) + Im

∫ z

s0

�1(w) dw,0,Re(c3(z)), Im
∫ z

s0

�4(w) dw,

)
F

.

The first part is clear andS is symmetric with respect toΠ2 if and only ifIm
∫ z
s0
�1(w) dw =

0, that is,
∫ z
s0
�1(w) dw ≡ 0 and the last claim follows.

Remark 4.9.

(1) It is not difficult to see thatLemma 4.7andProposition 4.8hold without the simply
connectivity assumption.

(2) Observe that ifΠ3 is spacelike or degenerate, then there is no spacelike vector orthog-
onal toΠ3 in L4. Therefore the symmetry problem of spacelike, zero mean curvature
surfaces in not defined is these cases.

Example 4.10. Consider

c(s) = (0, s,0,0) ∈ L4,

n(s) =
(

e−s√
4 + e−2s

,0,− 2√
4 + e−2s

,0

)

+i

(
− e−s√

4 + e−2s
,0,− e−2s

2
√

4 + e−2s
,

√
4 + e−2s

2

)
∈ C4,

for all s ∈ R. By a straightforward calculation, we obtain that

�(Re(n(w)), Im(n(w)), c′(w)) =
(

−1,0,−e
−w

2
,
e−w

2

)
.

Therefore, the solution of the Björling problem for the given strip is

X(z) =
(
v, u,

1

2
e−u sin(v),−1

2
e−u sin(v)

)
,

with z = u+ iv ∈ C. Note thatx2 is an axis of symmetry of the complete spacelike, zero
mean curvature surfaceS = X(C).
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Example 4.11. Consider

c(s) = (sinh(s),0,0, cosh(s)) ∈ L4,

n(s) = (0, cos(s), sin(s),0) + i(sinh(s),0,0, cosh(s)) ∈ C4,

for all s ∈ R. By a straightforward calculation, we obtain that

�(Re(n(w)), Im(n(w)), c′(w)) = (0,− sin(w), cos(w),0).

Therefore, the solution of the Björling problem for the given strip is the complete spacelike,
zero mean curvature surface

X(z) =


cosh(u) 0 0 sinh(u)

0 cos(u) − sin(u) 0

0 sin(u) cos(u) 0

sinh(u) 0 0 cosh(u)




0

0

− sinh(v)

cos(v)

 ,

with z = u+ iv ∈ C. Note thatΠ2 = [e1, e4] is a timelike 2-plane of symmetry of the
surfaceS = X(C).

Example 4.12. Consider

c(s) = (cos(s), sin(s),0,0) ∈ L4,

n(s) = (cos(s), sin(s),0,0) + i(0,0, sinh(s), cosh(s)) ∈ C4,

for all s ∈ R. By a straightforward calculation, we obtain that

�(Re(n(w)), Im(n(w)), c′(w)) = (0,0,− cosh(w),− sinh(w),0).

Therefore, the solution of the Björling problem for the given strip is the complete spacelike,
zero mean curvature surface

X(z) =


cos(u) − sin(u) 0 0

sin(u) cos(u) 0 0

0 0 cosh(u) sinh(u)

0 0 sinh(u) cosh(u)




cosh(v)

0

sin(v)

0

 ,

with z = u+ iv ∈ C. Note thatΠ2 = [e1, e2] is a spacelike 2-plane of symmetry of the
surfaceS = X(C).

Example 4.13. Consider

c(s) = (s2, s,0, s2) ∈ L4,

n(s) = 1√
2 + 4s2

{(1,−2s,−1,0) + i(1 + 4s2,2s,1,2 + 4s2)} ∈ C4,
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for all s ∈ R. Calculating as above, we obtain that

�(Re(n(w)), Im(n(w)), c′(w)) = (−1,0,−1,−1).

The solution of the Bj̈orling problem for the given strip is the complete spacelike, zero mean
curvature surface

X(z) = (u2 − v2 + v, u, v, u2 − v2 + v),

with z = u+ iv ∈ C. This surface intersects the degenerate 2-planeΠ2 = [e1 + e4, e2]
orthogonally alongX(u,0) = c(u), butΠ2 is not a plane of symmetry ofS. On the other
hand, if we take again the curvec(s) = (s2, s,0, s2), but take

n(s) = 1√
1 + 4s2

{(1,−2s,0,0) + i(4s2,2s,0,1 + 4s2)},

this time, we obtain

�(Re(n(w)), Im(n(w)), c′(w)) = (0,0,−1,0)

and

X(z) = (u2 − v2, u, v, u2 − v2),

which is symmetric with respect to the 2-planeΠ2.

Example 4.14. The timelike 3-spaceΠ3 = {x2 = 0} is a 3-space of symmetry of spacelike,
zero mean curvature surfaceS given inExample 3.6.
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