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Abstract

In this paper, we extend and solve théiing-type problem for spacelike, zero mean curvature sur-
faces in the Lorentz—Minkowski four-dimensional spaéeAs an application we establish symmetry
principles for this class of surfaceslit and construct new examples.
© 2005 Elsevier B.V. All rights reserved.

PACS: 02.40-k; 03.30.+p
MSC: 53A10; 53C42; 53C50

JGP SC: Differential geometry

Keywords: Lorentz—Minkowski space; Minimal surfaces; Symmetries; Holomorphic extensions; Riemann surfaces

1. Introduction

It is well known that spacelike, zero mean curvature surfacekdimepresent lo-
cally a maximum for the area integrfil5,7] and also that they admit a Weierstrass-
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type representatiof21,22] But the spacelike, zero mean curvature surfaces®inrep-
resent locally the maximum (resp. minimum) for the area integral, if the normal vari-
ation is made in the timelike (resp. spacelike) direct[@®]. For these surfaces we
also have Weierstrass-type representaf®i2]. An important difference between the
global theory of spacelike, zero mean curvature surfaces®imnd of the global the-

ory of spacelike, zero mean curvature surfaced.fnis established by the so-called
Calabi-Bernstein theorem. It states that a complete spacelike, zero mean curvature sur-
face in L% is a plane[7,8]. However, this result cannot be extendedlib, n > 4

[11].

In the three-dimensional Euclidian spak®, given a real analytic strip (s&ection 3,
the classical Bjrling problem[9,16] was proposed by Byling [6] in 1844 and consists
of the construction of a minimal surface B® containing the strip in the interior. The
solution for this problem was given by SchwarZ2%] by means of a explicit formula in
terms of the prescribed strip. This formula gives a beautiful method, besides the Weierstrass
representatiof4], to construct minimal surfaces with interesting properties. For example,
properties of symmetry.

The equivalent problem in the Lorentz—Minkowski three-dimensional space was pro-
posed and solved, using a complex representation formula develop&d The authors
introduced the local theory of spacelike, zero mean curvature surfaé€siina different
way of that given irf21,22]through the Weierstrass representation. They constructed new
examples of space like, zero mean curvature surfaces, gave alternative proofs of the charac-
terization of the spacelike, zero mean curvature surfaces of revolution and the ruled surfaces
in L3 and proved symmetry principles for those surfaces. We can also find in the work of
Galvez and Mird13], the version of Bjrling problem in the hyperbolic three-dimensional
spaceH?. In that paper the authors constructed the unique mean curvature one surface in
H2 that passes through a given curve with a given unit normal along it, and provide diverse
applications.

In Euclidian four-dimensional space, theoBjng problem for minimal surfaces was
proposed and solved 4], see alsd2], from a complex representation formula. In that
work the authors also recovered the symmetry principles of minimal surfaBéiotained
by Eisenhar{10].

In this paper, motivated by results and techniqueflef,12] we introduce the local
theory of spacelike, zero mean curvature surfacds®jnusing a complex representation
formula — seeTheorem 3.1- that describes the local geometry of these surfaces. This
formula is used to solve the &ijling problem irlL4, which is illustrated with two examples.

As another consequence Bheorem 3.1we recover the representation formulae of the
Bjorling problem for minimal surfaces iR® and spacelike, zero mean curvature surfaces
in 3. We also recover the symmetry principles for these surfaces. Finally, we study the
symmetry principles for the spacelike, zero mean curvature surfaéésand present new
examples.

It is not difficult to see that the results in this paper can be extended to spacelike, zero
mean curvature surfaceslitt, n > 4. Here we restricted the problem to the case 4
because the formulae and statements are more concise in this case. Also, the-cagte
is the simplest example of a relativistic spacetime.
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2. Preliminaries

Let L4 denote the four-dimensional Lorentz—Minkowski space, that is, the vector space
R* := {(x%, %, x%, x*) : x' € R} endowed with the Lorentzian metric

) i= (drh)? + (dr®)? + (dx®)® — (dx*)> (1)
Givenu, v, w in L, we define the vector produ(u, v, w) € L* by
X(u, v, w), x) := —det, v, w, x), (2)

which in coordinates takes the form

M2 U2 w2 Ml Ul wl Ml vl wl Ml vl wl
R, v,w) = | [ud 3w, — |ud ¥ wd]|, |u? v w2, |u? v? w?
u? v* wt ut v wt| ut vt wt| |ud vt

Let {e1, e, e3, e4} be the canonical basis &*. The proof of the following proposition is
straightforward.

Proposition 2.1. The vector product X has the following properties:

Q) (X(u, v, w), u) = (X(u, v, w), v) = (X(u, v, w), w) = 0;

(2) R(u, v, ea) = it x D, where it = (ut, u?, u3,0), v = (v v?,13,0) e R® c L%

(3) K(u, v, e2) = it x v, where it = (ut, 0, u3, u®), v = (vl, 0, v3, v4) el3c L

(4) X(u, v, e1) = —u x vand R(u, v, e3) = —it X V;

(5) (M(u1, u2, uz), ¥(vy, v2, v3)) = —det(u;, v;)), 1 <i;j <3, u;,vj e L* where x is
the cross-product of R® or of 3.

LetC] be then-dimensional complex vector space endowed withithenitian structure

n—1
Lz w»=)» Zuw —u".
=1

We will deal with the following subsets of th@mplex projective space P(C]) associated
to P(C}) (see[14,5,23):

(1) CP 1= {z € C*\ {0} :< 2,z »>> 0}/C*;
2) (C]HI” L. ={z e C"\ {0} :« z,z >< 0}/C*;
(3) aCH"—l = {z € C"\ {0} :K z,z >= 0}/C*.

Denote bszf4 the Grassmannian of spacelike 2-planekdivith the induced orienta-
tion. Givenu, v € L4, with (u, u) = (v, v) = A2 > 0 and(u, v) = 0, let/7? = spanji, v] €
G3 4. We canidentifyG$ , with 07 := {[z] € CP} ' :« z, z »>= 0} through the mapping



A.C. Asperti, JAM. Vilhena / Journal of Geometry and Physics 56 (2006) 196-213 199

that sends eadl? € G3 ,into[z] € Q2wherez = u + iv. GivenIT? = spanfi, v] € G3 4,
letvo := X(u, v, es) andro := X (%, ¥, vo); then{vo, 1o} is a basis for(1%)+.

Proposition 2.2. Let vg and to defined as above. We have:

(1) vo =it x D, where x is the cross-product in R3 C L

(2) 10 = A2ea + uu + v*v, where A2 = (u, u);

(3) (vo, vo) = A2(A2 + () + (v1)?) and (o, 10) = —22(A% + (u*)? + (v)?);

(4) if no := V2202 + u??2 + (v¥2?), T := % and v = %, then {4, ¥, v, t} is a posi-
tively oriented orthonormal basis of L*.

Denote byG, 4, the Grassmannian of timelike 2-planesldgt with the induced ori-
entation. Givenvy, vp € L4, with (v, v1) = —(v2, v12) = A2 > 0 and (v1, v2) = 0, let
I1? = spanpy, 7] € G, 4- We can identify, as above;; , with the real quadri@R, which
is defined as the set of classels§ ICH" 1 such thatie(z), Im(z)) = 0 andRe(z), Im(z)
are linearly independent.

Definition 2.3. A smooth immersionX : M2 — L4 of a two-dimensional oriented con-
nected manifold is called @acelike surface S in L* if the induced metric & := X*(,) on
M? is a Riemannian metric.

Let (U, z = u + iv) be isothermal coordinates in a neighborhood of a geintM?, that
is (Xu, Xu) = (Xu, Xo) = 2% and(X,, X,) = 0. This induces a holomorphic structure on
M?. We define an orthonormal bagis t} of (T,[,S)L by

V T
V= ) and 7= —0, 3
o o

where

vo=B(Xu Xpoea) 0= R(Xu Xoov0), o= /22024 (42 + (14)2).

Observe that andt are, respectively, spacelike and timelike vector fields normal to the
surfaceS = X(M) and it is not hard to see that they are globally defined oAlso, let
B = {01, 02, 93, 94} be the local orthonormal frame adaptedstavhere

Xu XU

3127, 0 = —, 03 =, 04 =T (4)

As far as we know, the normal franje, ¢} was introduced if12], where spacelike sur-
faces inL* are extensively studied. L&t and V be the Levi—Civita connection df*
and (M?, ds?), respectively. Thaecond fundamental form of S is defined byw(V, W) :=
(Vy W)t and themean curvature vector by H), = %tr(ap) forall p e M?.

Proposition 2.4. If S = X(M) is a spacelike surface in "', then Ay X = 2H.

Proof. See[12]. O
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Remark 2.5. A spacelike surfacé in L* has zero mean curvaturefif = 0 for all points
of S.

Let S = X(M) a spacelike surface ib* defined in terms of local isothermal coordinates
(U, z = u + iv) of M?, and define the complex functions

axk  oxk
o= i k=123 4 (5)
u v

It is not hard see that

@Y+ @+ @ — @M =0 19 P+ 1077 +16%7 — l9*7 =22 > 0.
The induced metric of is ds? = 12|dz|2 and the complex 1-forms* := ¢* dz are glob-
ally defined onM. Now if S is a spacelike, zero mean curvature surface, it follows from

Proposition 2.4hat* is holomorphic. Thus§ can be represented as

Z
X(z) = 9%/ w+ ko, wherew = (0!, »?, 3, »*) andzg, z € M. (6)
20

The converse also holds.

2

Theorem 2.6. Let M? be a connected Riemann surface and o = (o, w?, w3, ®*) a holo-

morphic 1-form with values in C* globally defined on M? satisfying

(1) €K w,0>»=0,
(2) € w,0>>0,Yp € M?,
(3) Re fy w = 0, for all closed path y on M?.

Then the map X : M? — 1L* given by the Eq. (6) defines a spacelike, zero mean curvature
surface in L%,

For the proof seg12]. TheGauss map G : M? — Q% of a spacelike surfacg = X (M)
in L* is defined locally byG(z) = [®(z)], with X, = v® for some functiony : M?> — C
and® = (¢, 92, ¢°, ¢*), for more details sefd8,12] Leta(z), b(z) be the complex valued
functions defined o2 by

_ 3+ 4 3+ 4
a(z) = H, b(z) = ﬁ. )
We have that

D(z) = u(L+ab,i(1 —ab),a — b, a + b). (8)



A.C. Asperti, JAM. Vilhena / Journal of Geometry and Physics 56 (2006) 196-213 201

It follows from (3) and (8) that

[ (1+ |bIP)Re(a) + (1 + |al?)Re(b) T
o) = _ 1 1+ |b1P)TIm(a) + (1 + |al?)Im(b)
11— abl/(1+ a1+ 6] lal? — |b|? ’
L (14 1al®) @+ [b]?) ]
[ (1+ [b]2)Re(a) — (1 + |al)Re(b) T
o) = _ 1 (1+ b12)Tm(a) — (1 + |al?)Im(b)
11— abl\/(1 + |al?)(1 + |b|?) lal?|b)? — 1
0

For more details séd2). Let A : M2 — C* be the complex map defined by
A(z) = v(z) +it(2), 9)

and observe thatf(z)] € OR.

3. Main results

Now we are able to propose and solve théring problem for spacelike, zero mean
curvature surfaces ih*. Letc : I € R — LL* be a regular real analytic spacelike curve in
L*andlet: : I — C*be areal analytic vector field aloagthat is Re(n), Im(n) : I — L4
are vector fields along) such that(c’(s), Re(n)) = 0 = (/(s), Tm(n)), (Re(n), Re(n)) =
—(Jm(n), IJm(n)) = 1 andIm(n) is future directed for alf € I. In analogy with[1,9], we
call such a paird, n) aanalytical strip in L*. The problem is then to find a spacelike, zero
mean curvature surfacgdefined byX : 2 € C — L* with I C £2, such that

(1) X(u,0) = c(u),
(2) A(w,0)=n(u),Vuel.

Itis easy to see that ¥ : 2 € C — L“is a spacelike, zero mean curvature surfade’in
thenc(u) := X(u, 0) andn(u) := A(u, 0) satisfy the above data and, in particular, they are
real analytic. Then there exist holomorphic extensiof$ andn(z) and these extensions
are unique by thélentity theorem for analytic functions (seg22, p. 87]). In this situation,
we can explicitly recoveX(z) from ¢ andn by means of a unique complex representation
formula.

Theorem 3.1. Let S be a spacelike, zero mean curvature surface in L* given by X : U C
C — L. Define the curve c(u) := X(u, 0) and the vector field n(u) := A(u, 0) along c, on
a real interval 1 C U. Choose any simply connected open set §2 C U containing I, over
which we can define holomorphic extensions c(z) and n(z) of ¢ and n. Then, for all z € §2



202 A.C. Asperti, JAM. Vilhena / Journal of Geometry and Physics 56 (2006) 196-213

it holds

X(z) = Re (c(z) +i /Z X(Re(n(w)), Im(n(w)), ¢’ (w)) dw) , (10)

S0

where sg is a arbitrary fixed point of I and the integral is taken along an arbitrary path in
$2 joining so and z.

Proof. SinceS has zero mean curvature, the complex function/ — C* defined by (5)
X .
v = 28— with & = (p1, 92, ¢°, ¢%),
Z
is holomorphic inU and by (6) we can write

Z
X(z) = %e/ W dz + ko, (11)
2

0

where ko € L* is a suitable constant such thai(u,0) = c(u) for all u e I. Let
{91, 02, 03, 04} be the local orthonormal frame adaptedStgiven in (4). Now writeX
in this basis,

X(93, da, 31) = (X(d3, 04, 01), 92)02 = —det(1, d2, 33, d2)d2 = —d2,

and sinceX, = Ad2, we have
Y(z) = Xu(z) — 1Xy(z) = Xy +1 X (v(2), 7(2), Xu(2)) (12)

in isothermal coordinated) z = u + iv). Restricting?(z) to I and using the definition of
¢, n we obtain

Y(u,0)= X,(u, 0)+iX (v(u, 0), t(u, 0), X, (u, 0))
= c'(u) + i X Re(n(w)), Im(n(n)), ' @)).
Since these functions are real analytic, we can extend them to two holomorphic functions

¥(z), ¢ (z) + i B (Re(n(z)), Im(n(z)), ¢'(z)) on a simply connected open s@tC U and
they coincide orl C £2. Hence by thedentity theorem for analytic functions it follows that

U(z) = (2) + i1 & (Re(n(z), Imn(z), ' (z)), Vze L.

Therefore

') =c)+i /Z X(Re(n(w)), Tm(n(w)), ' (w))dw, Vze L2

S0
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is well defined o2 and obviously is the primitive of the holomorphic mappi#y). Thus,
(112) yields

X(z) = Re (c(z) +i /Z X(Re(n(w)), Im(n(w)), ¢’ (w)) dw) .

50
This completes the proof of the theorent]

Remark 3.2. We can choose any € I in (10) and the values df(z) will remain the same,
sincec'(z), Re(n(z)), Im(n(z)) all take real values if € £2.

Using the complex representation formula given in (10), we now show that tirbrigj
problem has a unique solution.

Theorem 3.3. There exists a unique solution X : 2 — L* to the Bjérling problem for
spacelike, zero mean curvature surfaces in L%, which is given by

X(z) = Re (c(z) +i /Z X(Re(n(w)), Im(n(w)), ¢’ (w)) dw) , (13)

50
withw = u + iv € £2, so € I, where §2 is a simply connected open subset of C containing
the real interval I and for which ¢, n admit holomorphic extensions c(z), n(z).

Proof. Define the holomorphic curwé : 2 € C — C* by

U(z) = (2) + i X (Re(n(z), Imn(z)), '(z)), Vze s (14)

where$2 is a simply connected open subset®tontaining/ on which the holomorphic
extensions(z), n(z) exist. Since byroposition 2. 1¢' (1) andX(Re(n (1)), Im(n(u)), ¢’ (u))
are orthogonal and have the same length, it follows that

(@' (u, 0)7 + (¢%(u, 0)) + (¢>(, 0))* — (¢*(u. 0))* = 0,Vu € I.
We also have that
ot (u, 0)12 + |9?(u, 0)2 + |93(u, 0)1? — |p*(u, 0)? = 2(c'(u), ¢'(u)) > O.

Thus

@' @) + ©* @) + (©* () — (*(=)* =0,

9 (217 + 19*(2)17 + 1% = 19*()I* > 0,
for all z € 2. Moreover, the holomorphic curw& has no real periods faf2 is simply
connected. Therefore bjheorem 2.6 X(z) = Re ffo ¥(w)dw defines a spacelike, zero
mean curvature surfacg= X(£2) in L%, where¥ is given by (14) andg € I. Now we

shall check that this surface satisfies thémijg conditionsX(u, 0) = ¢(u) andA(u, 0) =
n(u). The verification of the first condition is easy, sifd€Re(n), Jm(n), ¢) is real when
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restricted td. To check the second condition, first recall tlhat= 2(0X/9z). So it follows
from (14) that, restricted th we have

X,(u,0)=c"(u) and X,(u,0)=— X Re(n(u)), Imn()), ¢'(u)).
On the other hand, from (12) we have
X,(u, 0) = — X (v(u, 0), =(u, 0), ¢’ (u)).

SinceIm(n(u)) is future directed it follows tha&e(n (1)) = v(u, 0) andIm(n(x)) = t(u, 0).

At last we will prove the uniqueness, which is to be understood in the following sense:
if X(u V), z=u+ive Qis another solution, theX (u, v) = X(u,v)for z=u+ive

2N 8. In fact, any pair of solutionX, X to the Bprling problem coincide on areal interval

I C 2N £2, and since both are analytic they must coinciden £2. This completes the
proof of the theorem. [

Remark 3.4. Observe thatthe unicity inthe above theorem s only referred to spacelike, zero
mean curvature surfacés: 2 € C — L# satisfyingX(u, 0) = c(u) and A(x, 0) = n(u).
Actually a little more can be proven: given an analytic stripi() in L%, there exists a unique
spacelike, zero mean curvature immersion M2 — L.* whose image containg/) andA
restricted ta- is n. The existence part of this statement follows fréhreorem 3.3For the
unicity part, we refer to Corollary 3.4 ¢1]. There unicity is proven for analytic strips in

L3 and spacelike, zero mean curvature surfac@s’jiut their arguments work in our case

as well.

Example 3.5. Consider

c(s) = (s — 53,0, 5%,0) € L4,
1
(1 — 252 4 95s%)1/2

n(s) = (25, —2v/2si, —(1 — 35?), (1 + 359)i) € C4,
for all s € R. By a straightforward calculation, we obtain that
R(Re(n(s)), Im(n(s)), ¢'(s)) = (0, 1+ 352, 0, —2/2),
whose holomorphic extension is
X(Re(n(w)), Im(n(w)), ' (w)) = (0, 1+ 3w?, 0, —2+/2w).

Thus

X(z) := Re((z — 25, 0,22, 0)) — Im((0, z + 2% — (s0 + 58). 0, —v/22% + v/253))
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and therefore, the solution of the@jing problem for the given strip is
Xiz)=W+ 3uv? — ud, —v — 3ulv + 3, u? — 12, 2\/§uv),
withz =u +iv e C.
Example 3.6. Consider
¢(s) = (14 cos), 0, sins), 2 sin(s/2)) € L4,
n(s) = (cosg), 0, sin(s), 0) + i(—1 — cosf), 0, cos() cot(s/2), csch/2)) € C4,
for all s € (0, 27r). By similar calculations,
X(Re(n(w)), Im(n(w)), ' (w)) = (0, sinz/2), 0, 0).
Then
X(z) := Re((1 + cosg), 0, sin(z), 2sink/2))) — Im(—2 cos/2) + 2 coso/2))

and therefore, the solution of the@jing problem for the given strip is
X(z) = (1 + cos) coshg),
—2sin(/2) sinhf/2), coshg) sin(), 2 cosh{/2) sin@/2)),
with z = u + iv, whereu € (0, 27) andv € R.

As consequences dheorem 3.3ve recover the classical &jling problem forR3 and
also the Bjrling problem forl.3, se€[1].

Corollary 3.7. Letc: I — R3 R3 = {(x* = 0} C L%, be a regular real analytic curve and
let n . I — C* be a real analytic vector field along ¢ such that n(s) = &(s) + ies, where
£(s) € R3 is a unitary vector field satisfying (c'(s), £(s)) = Oforall s € I. Then there exists
a unique solution to the Bjorling problem for minimal surfaces in R3, which is given by

X(z) = Re {c(z) —i /Z(‘E(w) x ¢'(w)) dw} , (15)

where w = u +iv € 82, 59 € I, 2 is a simply connected open set of C containing I and x
is the cross-product of R3.

Proof. FromTheorem 3.3t follows that the solution to the Byling problem is given by

X(z) = Re (C(Z) +i /Z X(&(w), es, ¢’ (w)) dw>

0

= Re (c(z) —i /Z X(E(w), ¢'(w), es) dw> )

S0
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Hence, fromProposition 2.5tem 2 we have
X(z) = Re (c(z) —i /Z %(u)) x & (w) dw) = Re (C(z) —i /Z E(w) x ¢'(w) dw) .
S0 S0

Corollary 3.8. Letc: 1 — L3 13 = (x? = 0} C L?, be a regular real analytic spacelike
curveandletn : I — C*be a real analytic vector field along c of the formn(s) = e +iV(s),
where V(s) € L3 is a future directed, timelike unitary vector field such that (c'(s), V(s)) = 0
forall s € 1. Then there exists a unique solution to the Bjorling problem for spacelike, zero
mean curvature surfaces in 1.3, which is given by

Z
X(z) = Re {c(z) +i / (V(w) x ¢'(w)) dw} , (16)
50
where w = u +iv € 2, 50 € I, 2 is a simply connected open set of C containing I and x
is the cross-product in L3

Proof. FromTheorem 3.3f follows that the solution to the Byling problem is given by

X(z) = Re (c(z) +i /Z X(eo, V(w), c'(w)) dw>

S0

= Re (c(z) +i /Z X(V(w), ¢'(w), e2) dw) )

0

Hence, fromProposition 2.1tem 3 we have

X(z) = Re (c(z) +1i /Z V(w) x ¢/(w) dw) = Re (C(z) +i/Z V(w) x ¢'(w) dw) .

50 S0

O

4. Symmetries

Now, we will study the symmetries of the spacelike, zero mean curvature surfdcés in
via the complex representation formula of thé#ing problem for spacelike, zero mean
curvature surfaces. In order to do so we fix the following notation (e}l = x(z) + iy(z),
wherex(z), y(z) are real-valued functions defined on the operzet C. If x(z) is harmonic
and £(z) is holomorphic inf2, thenx(z) is harmonic andf(z) is holomorphic as a function
of z in the open sef2* := {z : z € £2}. Note that,£2 is symmetric if only if 2 = 2*. We
also have that, if C £2, fis holomorphic inf2 andf restrict to/ take only real values, then
f(2) = f@onl C 2N 2*. Therefore f(z) can be holomorphically extended®uU 2*.

Proposition 4.1. Ler X : 2 € C — L* be the solution of the Bjérling problem, for a
given strip (c, n) in L%, where $2 is a symmetric simply connected open set containing the
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real interval I and for which ¢ and n admit holomorphic extensions ¢(z) andn(z), where
z=u+iv € 2. Then for allz € £2 we have

X@E) = Re {C(z) —i / " R(Re(r(w)), In(a(w)), ¢ (w) dw} . 17)

50

Proof. The surfaceS = X(£2) given byX (., v) := X(u, —v), clearly satisfies,,, (u, v) =
Xuu(u, —v), Xyp(u, v)~= Xm,gu, —v) and still is a spacelike, zero mean curvature surface
in L%, Associated toX, let A(u, v) := ¥(u, v) + i¥(u, v). From Proposition 2.2and the
definition ofX, we have that
To(u, v) = (\%ea —l—xﬁXu —l—xﬁXv)(u, —v),
vo(u, v) = — K (eq, X, (u, —v), Xy(u, —v)),
and hencé&(u, v) = t(u, —v) andv(u, v) = —v(u, —v). Therefore,
Z(u, v) = —A(u, —v). (18)
This implies thatd (u, 0) = —A(u, 0) = —n(u) andX(u, 0) = X(u, 0) = c(u). HenceX is
a solution of the Bjrling problem forc™= ¢, 7 = —n and thenX(z) = Re fsz ¥ (w) dw,
where¥(z) = X, +i ¥ (3(z), 7(z), X..(z)), see (13). Restricting/(z) to I and using (18)
we obtain
U(u, 0) = X, (u, 0)+ i B (—v(u, 0), 7(u, 0), X, (u, 0))
= '(u) — i ¥ (Re(n(u)), Imn(u)), ' ().
When we extend these functions®y, the result follows. O

The proofs of the following corollaries are analogous to thosearbllaries 3.7 and 3.8

Corollary 4.2. Under the hypothesis of Proposition 4.1if § = X(2) c R® = {x* = 0}
and n is of the form n(s) = &(s) + ies, with &(s) € R® unitary such that (¢'(s), £(s)) = O for
all s € 1, then

X([@) = Re {c(z) +i /Z(E(w) x c'(w)) du)} , forallz € £2. (29)

Corollary 4.3. Under the hypothesis of Proposition 41, if S = X(£2) c L3 = {x? = 0}
and n is of the form n(s) = ez + 1V (s), with V(s) € L3 unitary, future directed, timelike and
such that {¢'(s), V(s)) = Oforall s € I, then

X(z) = Re {c(z) —i /Z(V(w) x ¢'(w)) dw} , forallz € $2. (20)

Remark 4.4. Using the formulae (15) and (19), itis not difficult to recover the two symmetry
principles discovered by Schwarz for minimal surface®Rfgsee[11, p. 123]). Also, by
using (16) and (20), we can recover the two symmetry principles for spacelike, zero mean
curvature surfaces ih3 given in[2, Theorem 3.10].
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Now using (13) and (17) we will derive three symmetry principles for spacelike, zero
mean curvature surfaceslif. They were motivated by the works of Schwarz §ticabove
mentioned. Before going to it, we have the following definitions.

Definition 4.5. Let IT* be ak-plane inL*. Assume thai7¥ is spacelike itk = 1; IT* is
spacelike, timelike or degeneratekit= 2; IT* is timelike if k = 3. Under those conditions,
we say thatlT* is a k-plane of symmetry of a spacelike surfake M2 — LL* if for all

p € M? there exists a certaip e M? such thatX(p), X(q) are symmetric with respect to
IT%, that is, such thatX(q) + X(p))/2 € ITF andX(q) — X(p) is perpendicular ta7*.

Theorem 4.6. Let S be a spacelike, zero mean curvature surface in L*, given by X : U C
C — LA Then we have:

(1) every spacelike straight line contained in S is an axis of symmetry of S;

(2) if S intersects any timelike or spacelike 2-plane IT?, orthogonally along a curve regular
of S, then IT? is a plane of symmetry of S,

(3) if S intersects any timelike 3-space IT3, orthogonally along a curve regular of S, then
13 is a 3-plane of symmetry of S.

Before going through the proof, it is convenient to make the following observation.
Suppose for instance that the spacelike, zero mean curvature stidantains a segment
of line L, which, we may assume is a portion of tieaxis. Then it is possible to define
isothermal coordinates= u + iv in a neighborhood of. so thatX(u, 0) parametrizeg,
see[17]. Analogous observations are in place in ciisetersects orthogonally thet, x*-
plane, or thecl, x?-plane or the 3-spade® = 0}. With this in mind, it is not difficult to see
thatTheorem 4.6s now a consequence of the following lemma.

Lemma 4.7. Let S be a spacelike, zero mean curvature surface in L%, given by X : 2 C
C — L* with 2 is symmetric and simply connected.

(1) If, for all u € I, the curve c(u) = X(u, 0), is contained in the x*-axis, then
X(u, —v) = (xt(u, v), —x2(u, v), —x3(u, v), —x*(u, v)). (21)
(2) If,forallu € I, the curve c(u) = X(u, ), is contained in the timelike x*, x*-plane IT?,
and if the surface S intersects IT? orthogonally along c, then
X(u, —v) = (xu, v), —x(u, v), —x3u, v), x*u, v)). (22)
(3) If, for all u € I, the curve c(u) = X(u, 0), is contained in the spacelike x*, x*-plane
12, and if the surface S intersects I12 orthogonally along ¢, then
X(u, —v) = (1, v), ¥°(u, v), —x(u, v), —x*(u, v)). (23)
() If, for all u € I, the curve c(u) = X(u, 0), is contained in the timelike 3-space IT° =
{(x2 = O}, and if the surface S intersects IT3 orthogonally along c, then
X(u, —v) = (e, v), —x%(u, v), ¥3(u, v), x*(u, v)). (24)
Proof.
(1) set c(u):=Xu,0) and n(u):= A(u,0). By hypothesis, it follows that
c(u) = (c*(u), 0,0, 0), Re(n(x)) = (0, v3(u, 0), v3(x, 0), v*(u, 0)) and Tm(n(u)) =



()

(3)
(4)
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(0, 7%(u, 0), T3(u, 0), T(u, 0)). Hence, by a straightforward calculation we have that
R(Re(n(u)), Im(n(u)), ¢’ () is of the form (Q X?(u), ®3(u), X*(u)). On account of
(13), (17) it follows, respectively, that

X(z) = (%e(cl(z)), —Jm /Z &2(11)) dw,
— Jm / : X3(w) dw, —Jm / ) X*(w) dw),

z "z b4
X@) = (me(cl(z)), Jm / X?(w) dw, Jm / X3(w) dw, Jm / X4 (w) dw),

SO S0 Ko}
which proves (21).
Since by hypothesis§ intersectsiT? = {x?> = 0, x> = 0} orthogonally atc(u) :=
X(u, 0), it follows that c(u) = (cX(x), 0, 0, ¢*(1)). Now recall that the 2-plan?
generated byie(n(x)) andIm(n(u)) is orthogonal tof(,)S alongc. It follows that
X(Re(n(u)), Im(n(u)), ¢’ () is of the form (Q X2(u), X°(u), 0). On account of (13)
and (17) we then arrive at the formula (22).
The proof is analogous to item (2).
The hypothesis implies thafu) = (c(x), 0, ¢3(u), ¢*(u)). Sinces intersects/72 or-
thogonally, we have thaX,(u, 0) € (I73)* and thereforeX,(u, 0) is parallel to the
unitary vectore; which is normal tof73. Then%e(n(x)) and Jm(n(u)) lie in 173,
which implies that the second component of both vectors are equal to zero. Hence
R(Re(n(n)), Im(n(u)), ¢'(u)) is of the form (QX?, 0, 0). Therefore, in conjunction
with (13) and (17) we obtain (24).0

If in Theorem 4.1/72 is a degenerate two plane, we have the following proposition.

Proposition4.8. LetrX : 2 C C — L4bea spacelike, zero mean curvature surface, with 2
symmetric, simply connected and assume that S = X(£2) intersects the degenerate 2-plane
1% = [e1 + eq, €3] orthogonally along the curve c(u) = X(u, 0). Then S is contained in

the

degenerate 3-space IT° = [e1 + e4, e, e3]. Moreover I1? is a plane of symmetry for S

if and only if X,(u, 0) is a multiple of e3.

Proof. Consider the basisF = {e1, €2, €3, €4} of L*, wheree; = Q(el + eq), €2 =

/2
2

(e1 — es), €3 = €2, €4 = ez and observe thdl? = [ey, €3]. Itis clear that(u) = X(u, 0)

is of the formc(s) = (cX(s), c2(s). 0, c1(s)). Since the 2-plan®? = [Re(n(u)), Im(n(u))]
is orthogonal tdl,(,)S alongc, is follows that— X, (u, 0) = X(Re(n(u)), Im(n(u)), ¢’'(u))
is of the form &*(u), 0, X3(x), X1(x)). By the same arguments as before, we obtain that

X(z) = (%e(cl(z)) —Jm /z X(w) dw, Re(c?(2)),

—Jm / . X3(w) dw, Re(ct(z)) — Tm / ) X (w) dw),
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X@) = (ERe(cl(z)) +am [ ) du, Re(e). Im [ 83w) du, ()

S0 S0
Z
+Jm / X(w) dw> ,
S0

which written in the basig gives, respectively

X(z) = (E)Re(cl(z)) —Jm /Z &l(w) dw, O, %e(cs(z)), —Jm /Z X“(w) dw, ) ,

]_'
X@E) = (me(cl(z))mm / ) X(w) dw, 0, Re(c3(z)), Tm / ) X4 (w) dw,) .
50 S0 F

The first partis clear anslis symmetric with respect ta2 if and only if Jm f;} K(w) dw =
0, that is,ffo X1(w) dw = 0 and the last claim follows.

Remark 4.9.

(1) Itis not difficult to see thatemma 4.7andProposition 4.&hold without the simply
connectivity assumption.

(2) Observe that if72 is spacelike or degenerate, then there is no spacelike vector orthog-
onal tof72 in L. Therefore the symmetry problem of spacelike, zero mean curvature
surfaces in not defined is these cases.

Example 4.10. Consider
c(s) = (0,5,0,0) € LY,

(o Z_ 0o
n(s) = \/4~|—e_2S’ ’_«/4+e_2Y’
. ( e’ e Va4 + 6_2S> 4
+i [ — eC s

5 03 - )
A+ e 2VA+ e % 2
for all s € R. By a straightforward calculation, we obtain that

—w

K(Re(n(w)), Tm(n(w)), '(w)) = (_1’ 0, _%’ 62w> '

Therefore, the solution of the &ijling problem for the given strip is
1 1
X(z) = (v, u, ée_“ sin(v), —Ee_” Sin(v)) ,

with z = u + iv € C. Note thatx? is an axis of symmetry of the complete spacelike, zero
mean curvature surface= X(C).
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Example 4.11. Consider
¢(s) = (sinh), 0, 0, coshg)) € L4,
n(s) = (0, cos), sin(s), 0) + i(sinh(s), 0, 0, coshg)) € C4,

for all s € R. By a straightforward calculation, we obtain that
X(Re(n(w)), Im(n(w)), ¢’ (w)) = (0, — sin(w), cos@w), 0).

Therefore, the solution of the 8ijling problem for the given strip is the complete spacelike,
zero mean curvature surface

cosh¢) O 0  sinh§) 0
() = 0 cosf) —sin@) O 0
@=1 0 sing cost) 0 — sinh)

sinh@) O 0  coshg) cosp)

with z = u + iv € C. Note thatl7? = [eq, e4] is a timelike 2-plane of symmetry of the
surfaceS = X(C).
Example 4.12. Consider

¢(s) = (cos§), sin(s), 0, 0) € L4,

n(s) = (cosg), sin(s), 0, 0) + i(0, 0, sinh(), coshg)) € C4,

for all s € R. By a straightforward calculation, we obtain that
X(Re(n(w)), Im(n(w)), ¢'(w)) = (0, 0, — coshw), — sinh@w), 0).

Therefore, the solution of the 8jling problem for the given strip is the complete spacelike,
zero mean curvature surface

cosy) —sinw@) O 0 coshg)

X() = sin) cosf) 0 0 0
0 0  coshg) sinhu) sin(v)

0 0  sinh{) cosh{) 0

with z = u + iv € C. Note that/72 = [ey, ¢5] is a spacelike 2-plane of symmetry of the
surfaceS = X(C).
Example 4.13. Consider

c(s) = (s2,5,0,5%) e L4,

n(s) = {(1, =25, -1, 0) +i(1 + 45, 25, 1, 2 + 4s°)} € C4,

1
V2 + 4s?
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for all s € R. Calculating as above, we obtain that
X(Re(n(w)), Tm(n(w)), ' (w)) = (-1,0, -1, —1).

The solution of the Bjrling problem for the given strip is the complete spacelike, zero mean
curvature surface

2

X(z)z(uz—v2+v,u,v,u —v2+v),

with z = u + iv € C. This surface intersects the degenerate 2-plﬂﬁe= [e1 + ea, e2]

orthogonally alongX («, 0) = c(u), but I72 is not a plane of symmetry . On the other
hand, if we take again the curvés) = (s2, s, 0, s2), but take

1
n(s) = — {(1, =25, 0, 0) + (452, 25, 0, 1 + 4s°)},

V1+4s
this time, we obtain
X(Re(n(w)), Im(n(w)), ' (w)) = (0, 0, —1, 0)
and
X(z) = (u2 — v2, u, v, u? — v2),
which is symmetric with respect to the 2-plaié.
Example 4.14. Thetimelike 3-spac&l® = {x? = 0} is a 3-space of symmetry of spacelike,
zero mean curvature surfagiven inExample 3.6
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